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Abstract

A novel electrical circuit designed according to the theory postulated in this

paper delivers a prescribed irnmittance response. A driving-po-int function F(s)

is realized by a single-T circuit and/or.% single-. circuit, implyin" a negative

resistor but otherwise positive elements; a positive real irnmittance function F(s)

is realized y the same circuits augmented by an immittance if(s) of low rank at

I the input.

The circuit has high reliability and a rugged stability in the face of environ-

mental changes. In addition, Us low weight and small size fulfill requiremuents for

military applications.
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A New Idea for Realizing Positive Real
Inini tance Functions of Even Rank

! ''

1. INTRODUCTION

The positive real ,PR) function originally defined by Otto Brune (1931)

represents a general class of rational functions ccmposed of several subclasses.

The subclass treated in this paper,

N(s) su+N s' +... +NIS+14 °
! ~F(s)= =,()

D(s) S +D Sv-+... +Ds+

is a function of even rank (2u), and denoted as a function of thc ER class. All its

coefficients N. and Di are nonnegative. For convenience we assume that the

polynomials N(s) and Dis) are rormalized* by N D 1i ! The function

F (s) ~) =sv +W - ... +R I+X, +(3)
s'-i +... +D I os+D o

(Received I or pubiication 4 December 1969)

A*Urtless otherwise stated, the term polynomial as used in this paper always
incldes normalization in this sense.

.
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considered as belonging to a subclass of the ER class, is denoted as a function of

the H class. This function F s), treated in See. 1, has some properties that F(s)

does rot have.

We will show that twe function _F(s) can be realized by the circuits in Figure L.,

where it is the driving-point immittance. The terminating immittances Z(s) and

the immittance branches X(s) are positive. One uf the resistances (conductances)

Ru1 Rv , Rw is negative; it has to be realized by any suitable active device. If

the degree v is an even one, then X(s) and Z(s) are PR functions of rank r-1; if

the degree v is odd, then one immittance is of rank 1, and the other is of rank v-2.

We shall later assume that P(s) is known by its coefficients. ard design the circuit.

In See. 2 we will show that it is possible to derive an K-class functton F(s)

from an ER-class function F(s) of the same rank by adding an impedance of low

rank in series or in shunt to the circuit that realizes F(s). For any degree v the

circuit realizing F(s) must be a single T or single r, terminated at both ends.

2. HEI.IZ TIIN I DEFINITON OF \ I-CiASS FI"WTlION Fi.-

2.1 The Norm Function F(s) andl Its IIti:tizition

Consider the circuits in Figure 2. With R a positive constant and V a positive

immittance, let

U V(i-l) (3a)

and

W= -V(i- l )/i. (3b)

Then

I/r; + l/V + IW =UV + VW + UW =0. (4)

U + V = fiv , (5a)

V + W =v/ii (Sb)

V + W = V(-n-l) 2 /i. (Sc)

* In this figure, as in all others in this report, the terminated- T circuit (a)
implies impedance branches, anio the terminated-, circuit (b) implies admittance
branches.

ti_ __ _
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Figure 1. Terminted-T Circuit ,(a) and Terminated-r Circuit (b)nhereI r (s) is the Driving-point Immittane -

U W X

I V

-x

(IMPEDANCE NOTATIONS) (ADMITTANCE NOTATIONS)

~Figure 2. Notation (a) for Termnated-T Circuit UImpedance Branchea)

and (b) for Terxminat'd-=. Circuit Mdmittance Branches)
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ji i diriving-point imanittance of each of the circuits in Figure 2 is

ZV)+X(LJ4WV)-XZ _VZfi 2+VXfni-1) 2 + yzii
FV~ W+ )x ZVXBZ

With positive constants ;r, x, and z. normnalized PR functions -5(s) and 0(s). ana

9(Cs) 1 (dumrfiq function). we introduce

V VOW ra)

Z =zks) Z (7S)

and set

Z=Iu-2 (7d)

Then by substitution in Eq. (6).

We dencate the form of the function presentid in Eq. (8) az the morin. Its realiza-

tion according to Figure 2 needs an inverter circuit for U (which is negatve if

i< 1) or for W (w~hich is negative if Bi > i). In both evePnts the rwerter presents

the technical disadvaintage of being frequency-dependent. since U and W imply Ois).

2.2 oimmaace- FxuAcies F4 (s) a ws to be . li,

In an earlier paper (1966) we showed that F(s) rema ins invaz-iaWn when in any

pair of the functions #(s), O(s). and tas). the iuncticns are interchanged, or when

the functions are replaced by their inverses and then interchanged, provided that

th; original constantsifi, v. x are at the same time transiorined to new constants

E 1: v', and x1, For our present purpose we interchange 0(s) 2ad (sI and obtair.

F (s) - F(s). We then interchange the inverses of tL-ese functions and obtain

FBtS) - 11(s). The transformation formulas are listed in Table 1. What we

hae chieve-i is that in ()and F 8 (z). VI v'; coricomsttantly. L' and WO become

mere-cozistants and thus independent of frequency. But O~(s) and 4' (s) become

associated with the constants z' and x', which are cer-Liinly positive. Equivalent

bl'ock circuits realizing FUs) P A(s) ankd Ps a F(s) ar - presented in Figure 3.

-

t
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Table 1. Transformations of the Constants of P(s) for ]Fj(s)(--,(P)) and I/FB(S) (1/0- 1-/9, 1/4))i

A (S) 8) J/FB(S) P(S)

Ul 11/r

x' x(i- 1)/I 2  I/x

z' v(ri- ) 2 /i I/vfi

LII
2.3I The II U ,enl i,rn,lizcd Funesiojn 6(,) awl '11(-)

Let a(s) and b(s) be two polynomials of degree v and let a(s) and i3(s) be two
a

polynomials of degree v . Assume that

0(s] s s) is PR(9
b)(9)

and

is(s) s PR. (10)

Substituting these functions in Eq. (P,) yields

[()=s 2 a (s).-(s) + x(fi- 1) 2sa (s)0(s) +xb(s);I(s)/vhI )

s-a(s),a(s) + sa(s)b(s)/vii + xiib(s)i3(s)/v

The polynomials in the numerat.or and denominator of Eq. 11) are of degree

2 + ta +V, and normalized. Their degrees are the same as t'ose of N(s) ahe D(s)

in Eq. (2) when we provide that

II
for even degree v , v' = Va =  (V - I)(12)

II

a 2

for odd degree v, V ( - 1) (13a)

= (v - 3). (13b)

2i
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For example,

if v =2, O(s) =/Ns) s (14)

f if v = 3, O(s) = slS+aoI/(S~bo), (15a)

4)(s) = I/s" (15b)

if v = 4, O(s) = s(s+ao)/(s+bo), (16a)

'Z(s) = (s+ao)/s(s+3 0 ). (16b)

The results of a comparison of the coefficients in the expressions for P(s) given in
Eqs. (2) and (11) are listed in Table 2, from which impedance and admittance

realizations of O(s) and (P (s) can easily be found.

Table 2. Coefficients of N(s) and D(s) for Ranks 2, 3, and 4

_ 2 3 4

No NB bONB bo~oNB

1  NA aoNA +NB ao~oNA + (bo 4ojNB

N2  a 0o+NA  a0 0 + (ao 0+)NA + NB
S aO+NA ao+ o +N

D D boDE o o
0 b OD B

DI Da bD +  B oboDA + (bo+/o)D

+D +DA

3 o o A

NA = xcfi -) 2 , NB x/vn,

AA D /vn, D BXfl/v.
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2.1 Derivation of the Constants T. v, x, and of the Functions 6(s) and
4)(s) 1,rom the Coefficients of N(s) and D(s) of F(s)

Assume now that we know the 2v coefficients No ..... Nj-. and Do,

Dr "We want to find the three constants fi, v, x, and the Va +Va coefficients

of O(s) and 0 (s), a total of 3 +va+va unknowns. Table 2 offers 4 + va +V meaning-

ful equations, one more than we need. This surplus equation holds only when the

system of equations is consistent, which is the case if (a) the proposed coeffi-

cients are actually ihose of an H-class function pF(s), and (b) if our assumptions

are correct. [We shall test both conditions later. I Unfortunately, as a glance

at v = 4 shows, the equations in Table 2 are nonlinear. The more v increases,

the more complicated they become. To be able to cope with any degree v, we

hdve to find another way of determining the unknowns.

Ncte that for any degree v,

N 0 xb 0 0/vii, (17a)

1o0 XoA 0/v . (17b)

Therefore,

= + Voo. (18)

Thus, the constant Fi is immediately known.

Let us define the polynomials:

P(s) - sa(s) - b(s)/vi(i-l) , (19)

Q(s) = sa(s) + xfi-1)3(s) , (20)

a(s) = [N(s) - 1(s)j/(n--) . (21)

The polynomials P(s) and Q(s) are normalized, but U(s) is not. The degrees Vp

and v. are defined as follows:

If v is even, Vp VQ v . (22)

If v is odd, v( (V+); V (23)

The degree of U(s) is v- . (24)



Since the coefficients of 0(s) and D(s) are positive,

P(s) has only positive coefficients if W < I , (25)

Q(s) has only positive coefficients if > 1. (26) 1
From the identity of Eqs. (11) and (2) it follows that

b

P(s)Q(s) = I ufN (S) - 5(s)]!(!-1)

= s v + (PQ) is u - I +... + (PQ)Is4 PoQo . (27)

The polynomial product P(s)Q(s) is known in its summnation form. By solving the

equation P(s)Q(s) = 0, we can transform it into the product form. In this form it
consists of the product of some linear polynomial factors (corresponding to the

real roots) and some quadratic polynomial factors, each of the latter having a

negative discriminant (corresponding to the conjugate complex roots). From this
product we are able to attribute s.me factors to P(s) and others to Q(s) according
to the information given by Eqs. (22), (23), (25), and (26). But some ambiguity
may remain since some factors may be either in P(s) or in Q(s). As we shall s.e
later, this ambiguity can be cleared by using the surplus equation.

- As an example, assume that for a biquartic function F(s) (v=4), with W> 1,

P(s)Q(s) = s + (PQ) 3 s + (PQ)2s 2 + (PQ)s + PoQ0

= (s-s4)(s+s, )(s+s,)(S+S3 ) , (28)

where s4 1 s 1, s2, and s 3 are positive, and sI < a9 < s3" It is clear that (s-s4 ) is
a factor in P() only when W > 1. One of the other three factors is also in P(s).
We thus have three choices for distributing these factors over P(s) and Q(s), as
shown in Table 3.

| Table 3

ICrcice Po P Q0 Q

No I 1 1 4 2 3 2 3

No. 2 -s4s2 S2.S4 ss3 s2+s3No. 3 -s s 2  s2 s SS S+S3 .

No.3 -s4s3 s3-s 4  SlS2 Sl+2

H I3
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As another example Ict us consider a bicubic function F(s) (v=3, for which we
"!=:y have found that

P(s)Q(s) = s3 + (PQ)2s 2 + (PQ)Is + P Q
0 0

= (s-s i)(S+S 1)(S+82) (29)

where s 3, s 1 , and s2 are pcsitlve, and s I < S 2 ' In this example, if F < 1. then
(s-s 3) is 3 factor in Q(s) and the othei- two factors are in P(s). But if i> 1. then
we are left with the two choices in Table 4.

Table 4

Choice P Pi
No ~ 0 1 95 5 ' S

j o2 -s,>s 3 s 2 -s 3 J sI
! -I

Before going on to clear these ambiguities, we find by some trivial algebraic
operations that

a(s) = (Ml1)P(s)Q(s)/R - sf a(s)P(s)/Fi + a(s)Q(s)J t

and by ordering this equation we get

a(s)Q(s) = -(s) +i+I)P(s)Q(s)/[ s- a(s))/s . (30)

The only unknowns in Eq. (30) are the positivz coefficients of c-'s) and ails). On

both sides of this equation there are normalized polynomials of degree v-I.

Comparing coefficients yields v-! meaningful equations by which we are able to
determine the P-2 unknowns. Here we also have a surplus equation. In contrastto the results of the earl ier coefficient comiparison, however, the equati.ons de-

rived from Eq. (30) are l.near and can be solved by applying Cramer's rule. On
the right side of Ej. (30) we have a comparison in s ~ that has no match on the

left side. It yields the triviality

000 0

I.

________________
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When all the unknown coefficients of a(s) and a(s) have been determined, we find

the remaining unknowns v and x by

/vfi(- 1) =a P 132)

x(-)=Qt a ~ ' _ (33)

a

The coefficients of b(s) and $(s) can be obtained by comparing coefficients in

Eqs. (19) and (20).

2.5 In-%tnetions for So ,inv the - Y'st of Linear Fqt~ioas

We assume familtarity with Cramer's rule (see Hildebrand. 1956, among

others). The derivat.on of the matrix system to which the rule is applied deserves

some discussion. These matrixes can be written almost immediately since their

elements have to be taken from the coefficients of P(s) and Q(s) for each of the

possible ambiguous choices.

Each equation derived from (30) is a comparison of coefficients associated
i

with s and has the form

va  va2 aia a Q + E aikPk5 (H+ 1)(PQ)i/jN- (34)

j=O k-O +r I

where, by definition,

ai. 0 for i-j > va  
134a)

ak 0 for i-k> a , (34b)

Pk =0fork <0, (34c)

Q = 0 for i < 0 . (34d)
j|

Suppose we write these equations in sequence, starting with i v-2 at the top

and ending with i = I at the bottom (we need only these equations to determine the
v -2 unknowns). Because of ttL' normalizations there are some constant terms
that we must transpose to the right Eide, obtaining

___-__ - - . : ..
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va-I v-I

a. AQ.+ FC.~kP/ i ak A.-d + (5
j=O k-0 i kl -:+ +

where

a.}5-: ~i I =( I)(Qi+ I ( - 1)il: Kil ao (35b1_

i~~~l =  ' i+l-Di 1 (' - 1.35_

Frm the left sid of these equations we derive a square matri, j" P, ki
-of v-2 rows and c-lumns. 1his mnatrix has a group of columns listing the co-

efficlents of Q(s) and anmther group listing the coefficients of P(s). The first

column in each group lists the caefficients seqentially downward, starting al the

top with QrQ - I and P 1p I . The list is repeated from one column to the next
but shifted downward by one position. The places thus vacated then contain zero

elements-

From the right side of the equations we derive a column matrix IjCifi of v-2

rows. The difference between two column matrixes, this matrix is expressed by

ICil i 9 i+ 11 (36)

With these column matrixes Imown, we can apply Cramer's rule to get:

=det jQi.,j Pi, ki (37a)
a _ det j.k (37b)

with co'umrn j replaced by (3G);

k  det [ij. Pi, ki (37c)
ak

with column k also replaced by (36) .

Then

2 ia. ' /- (3a)

v and

arkln -ai -k/ A (38b.)

Z"--
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2.6 The Equation of Consistency and the Definition of Il-Class Fuctioas F(s)

As use-! here, the surplus equation in our system is the one ftat compared

the coefficients associated with s. When w-_ substituie the coefficients obtained

through Eqs. (38) we obtain

Avi Uici 0, (39)!=1 i=i

for which Ai and Ui are giver by Eqs. (35iand c i are the determinants multiplied

with cofactors of a square matrix that is obtained *hen the square matrix-of Y-2

rows and columns is extended by the row i=0 and one row is deleted. Assume, for

example, the degree v=6 . The extended matrix in this case is then

4
I 4 Q3 =1 0 P3' I 0 (0

3 Q P, I

Q Q2  Pl P 3
V o P2

I Q Q: O P21

The coefficients+ c V -c 2 , +c3" -c 4 " and +c 5 are obtainzd by respectively dele'ing

the consecutive rows 0, 1, 2, 3, and 4. The coefficient c 0 is defined as

c 0  - C~ (4:
----- i t 0

with A 0 (F+ i)P Qo1..o a-cording to (35a). By (31) we can add (A - Uo)co on the

left side in f 1) and obtain

*i I
6 = -~ c. 0 as the Equation of Consistency. (42)

i=O

Equation (42) yields 6 = 0 only if (a) the proposed coefficients Ni and D are thoseof an I-class function P(s), and (b) the correct choice has been made in selecting
the factors of P(s) and Q(s) from the product P(-IJQ(s) in Eq. (27. - Thus, this
equation also defines ahe H-class funct,:or. h

die
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Compact formulas for the coefficients of c. can b.- given for the relatively

low degrees v 3 and Pi = 4.

For v = 3,

c 2  -Qo c1 = 1, co = - [IPo + Qo(PI - Qo)J/(i+ l)PoQo (43)

For v = 4

c 3 = PIQo - PoQI c2 PO - Qo, e Q - ,

co = -[Po(c 2 +clQ o ) +Qo(c 2 +clPl) ] /(+IPoQD. (44)

V2.7 Numerical Example No. I (Biquaric 1I-Clasa, Function)

Let the function F(s) of degree v = 4 have the coefficients listed in Table 5,

from which we compute the coefficicnts of U(s) by Eq. (21). With F = 2.0. we use

Eq. (18) to obtain

Ps)Q(s) s + 15s 3 + 63s2 + 41s - 120

(s- 1)(s+3)s+5)(s+8). (05)

Table 5

ND. ___

0 60 240 -180 4

2 75.5 88 - 12.5 -

1 15.5 1 -0.5

The three choices for selecting P(s) and Q(s) from this product are listed in

Table 6 together with the coefficients c i computed by (44) and 6 by (42) for each

of he choices. According to the last column in Table 6. the correct choice is

No. 2, for which by Eqs. 137) we obtain

a-7, = -0 45.5, -49. (46)

i- -a._ - - -0- - -___ - - -- i --- • --= - ___ =



15

Table 6

IChoice JP P~ Q0  Q c 3  c2  C 6

-o 1 3 2 40 13 119 -43 11 -4 -351[No. 2 -5 4 24 111151 -29 7 i.4 0
No. 3 -8 '1 15 8I69 23 1 0 -12(;

Then, by Eqs- (38), we find

a 6.5. a 7~ (46a)

and by (32) and (33),

v =0.2, x =2. (46b)

Coefficient comparison in (19) and (20) yields

bf = 2. 13 = (46c)

* The two equivalent circuits relizing the impedance P(s) are shown in Figure 4.
Their element-s computed according to -lables I and Figure 3 are listed in Table 7.

I Table 7. Circuit Elements in Figure 4 for Examples Nos. I and 2

IExample No. I Example No. 2

FA P(S) F1F(s) F ~s) r17A(s) - F(s) IlIF is) = Fla)I _ _ I I B
fR 0. 0.5 0. 2 745;5'z0275S7

2.09i~ 338/90 1.6368449 I 3.11013057
L 0.326 1.3 0. 3733889 0.7095074

13/90 52;90 0.2709061 0.5145811

C .5 0.5 0.3654515 2.5513119
C2 0.5/6 0.5/6 10.0799116 0.5578634CJ. ___ ___ __ _ _ _ _ _ _

_____ __ ___ -I _ ____ _ _ ____ __V
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RI

JR2  R

F(s)

J7~jR 4

R4  C2

Ci

R2.
-::. R5

F(s) I jR Li

1 "2

_igure 4. Two Ecuivalent Circuits Realizing the Driving-point Impedance
F(s) [v 4; gronided negative resistance R3 1

X. tlization *( ER-Class F.awfisas Vs

If a PR fu. ction F(s) that is of even rank and has knox coefficients is .reated

zs discussed in Sec. 1. and Eq. (42) does not yield 6'=0 for any of the possibe

choices, then the function F(s) i6 not an H-class function. An H-class funcadn

can. however, be obtained by splitting a sitable PR function kf(s) fmm Fis).

____ .. .. +- 
-.-------- _.--__------ . ,,- _-=- == ..-- ---- =+ . . .- . . _
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Two splits. yiki4, dsa1 and cit~alleet c..revits, are feaz-b-e:

KF(S) -F(S) NI!

KF(s) =Ms) G kfus).R-b

For th~e sake of bref~ss w-, '.rW c~sder- only Eq. (41a) and as~ toall tbe
fi~ciowis L-rolmd are !--pednces- Mhe onmly p~amce 01 Us is = cbm an !2*I

and thie IH-ciass !=xezo FWz are ass~oed to be ef the sae ee rmaI 2r.

For ecomor!ca -e~ we try t xe--p doe cdn oX Is) ax !mw as possrae. -

~!be si=- est e-zer±t f(s) I.; realized by a =m!1 re w eail
O-As case rus tin See-. .

Ass~c a positive =ccs=±. k <3I dal yits

49~

N(S)e =oUZsJ3 ha kDs!5e(-k).=E OC--b b
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It can easily be shown that U(s), defined in (2), is

U(s) = IN(s) - D(s)/(n- 0)(l-k). (53)

But then Eq. (42) can be expressed as

V-1

6 cidi=0, (54)
i=O

where this time the coefficients c. are derived from (52) instead of from (27), and
1

n is derived from (50). Since

2/ [n2(I - 2/no)+ 1]/(n2 n2  (55)1/k = [n2( ,~ (5

the constant k can accordingly be replaced by no. Instead of solving directly for

k it is more convenient to first determine no. The H-class function F.(s) in

Eq. (48) has Leen found when, after a search with trial parameters no , Eq. (54)

U yields 6=0, We show this in Sec. 3.2.

3.2 Numerical Example No. 2 (liquartic II.Class Function)

Let a biquartic ER-class impedance function be described b.- the coefficients

l'isted in Table 8. The table also lists the coefficients of

d(s) = [N(s) - D(s)]/{n- 1). (56)

The function F(s) is PR. The minimum of ReFojw ) is F(0) = /n 0.4. We dis-

regard that F(s) - F(O) can be realized by the well-known ladder procedure. But

we want to point out that any positive constant 0 < k < 0.4 can be subtracted from

F(s), and so the value no can range between 2.5 and V = 1. 581 i388.

Let us first test whether F(s) is an H-class function. (This can be done

either by subtracting the constant k = 0 or letting no =V 2. 5. ) If we treat F(s)

as though it is an H-class function, Eq. (55) will yield the solutions

s 4 = 1.2143093, s I = 3.2212775, s 2 = 4.7705955, s 3 = 8. 134 1325. (57)

j j With these solutions we obtain the results listed in Table 9. As the last column

roi in Table 9 shows, F(s) is not an H-class function. We therefore use a series of

trial parameters n o to compute the 61, 62, 63 for the possible choices. Some of

the results are presented ir. Table 10. As the table shows, choice No. 2 is the
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Table 8

i I i DiI di

0 99.0 240 -247.7893405

1 133.4 195 -105.9987734

2 78.0 88 -17.2075930

3 15.6 16 -0. 6883037

1.0 1 0

Table 9

Choice Po P 1  Q 1

No. 1 -3. 9116272 2.0069682 18. 8046559 12. 9047280 -336. 1362632

No. 2 -5.7929785 3.5562862 26.2022980 11.3554100 -12.7247050

No. 3 -9.8773527 6.9198232 15.3674119 7.9918730 -201.7706416

Table 10

n 1.6 1.66 1.68 1.88 1.89

-409.7952392 -476. 4259531 -496. 3981346 -653. 3761346 -665. 1590852

-8.4908898 -O. 5233455 +0. 3875778 -0). 3571147 -0.0203837

63 -195.0626017 -175.4795503 -169.4798472 -I;.4249847 -188. 3943812

correct one. The value 62 changes its sign of polarity from no = 1. 66 to 1. 68

and again from 1. 88 to 1. 89. The exact zero crossings of 62 can be found by any

well-known interpolation formula (we suggest the one by Aitken in Abramovitz and
Stegun, 1964). The results of interpolation, together with the constants F, F, and
n, are pr-sented in Table 11.

For K = 0. 2 and k = 0. 8 the function P(s) is the samt. as in Example No. 1.

The impedance function has the same equivalent realizing cir-mu ts shown in

I, Figure 4. But since we want to realize KF(s), the resistances, inductances, and: inverse capacitances listed in Table 7 have to be multiplied by K = 0. 2. Finally.

to obtain the impedance F(s), both circuits have to be augmented with a series

j resistance 0 = k= I-K 0.8.O i
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" i Table 11

% In 15/9 - 1. 8894704

62 -0.0000013 +0.0000020

1.5811388 1.5811388

2.0 3. 6422085

0 . 2 0.3510830

With K = 0. 3510830, the constanis obtained for F(s) are:

n = 3. 6422085, v = 0.0818905, x = 0.3919552 , (58a)

and the coefficients

ao = 6. 0443381, a o = G. C,029088, b ° = 2. 5409135, o = 5.A181825. (58b)

0-

The impedance realizations of F(s) are again those shown in Figure 4, with

the circuit elements listed in Table 7. The element values have accordingly to

be multiplied by the factor K and the circuits have to be augmented with a series

resistance of R. = l-K = 0. 6489170 at the input to obtain realization of the im-

pedance F(s). We have thus found four equivalent circuits.

We want to point out that if f(s) - 1, the constant k does not necessarily have

to be positive. Since we have accepted one negative resistance in the realization,

we can as well accept a second. There is also the chance that this second nega-

tive resistance may be cancelled out by a positive one if F(s) is part of a larger

circuit.

3.3 The Function F(s) Obtained by Subtracting k(s) From F(s)

if trials with an assumed function f(s) = I fail to yield an H-.Mass function, we

have to find a more costly function f(s) = n(s)/d(s). Considering th decompositic.

[Eq. (44)] only, let d(s) be a part of D(s),

D(s) = d(s)D'(s) . (59)

Assume that the degree of n(s) is one order less than the degree of d(s). Then

according to (44),

KF(s) - (1 - k)N(s)/D(s) , (60)

- i
. . . . _ . . . . . . -
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with

N I N(s) - kn(s)D'(sHj/(1-k); (60a)

15(s) D(s) d(s)DI(s) (60b)

We can also allow n(s) to be of the same degree as d(s), changing (60) and (60a)
accordingly. We always have to ensure that KP(s) Ui (44) is PR, which is true
when

Re F~jw) - Re kffjw) 2:0. (61)

Let us now consider the following example.

3. I Numericai E~801pIe No. 3 (icuhtic If-l.ass Funcion)

For the coefficients of a bicubic impedance function Ffs) listed in Table 12,
we find that the denominator of F(s) is

D(s) fs(+s )(S + D's + D) (62)

wl iere
s 0. 5207709, D', 0. 479229 1, D' =3. 6004314. (62a)

Table 12

SN. D.

0 1 1.74 1.875

I I.12 38

AWe have chosen f(s) IN+s I iue5w opr Re FOandReftj0I
verss f = w. SnceF(0) =0. 928, and f(D) = 1. 920230 1, the constant k must be

less than 0. 483. Factorization of P(s)Q(s) allows two choices, 6 1and 62whsI
values for a series of parameters k are listed in Table 13.
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Figure 5. Example 2
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R I
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Figure 6. Two Equivalent Circuits Realizing the Driving-Point
Impedance F(s), With (v=3), of Example No. 3
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Table 13

k 0.48 0.40 0.399 0.3995

6i -0.20671047' -0.0007434 +0.011.5423 {+0.0053377
mI

62 -0.5809142 1-4.0111988 -4.0462474 -4.02871219

" 22

Being satisfied with the small 61 = -0. 0007434 for k 0.40 we go on to obtain

N0  0.3, 1 6. 0, N 2 7.55, N . (63)

The constants for F(s) are

i2.5, v 2.0, x 3.0 (64)

The coefficients of O(s) =s(s +a,)/C(s +b6) are

° = 0. b = 0.5; (s)= . = 1 . (65)

The two equivalent circuits realizing the driving-point impedance F(s) are shown

r in Figure 6, and the element vaiues are listed in Table 14.

Table 14. Example No. 3

T Circuit x Circuit

R o 0 0. 7680920 0.7680920

-R. R 1  0.24 0.24

R2  0.36 0.16

R -0.144 -0.4

R4  2.304 6.4

L 1 I1.728 4.8

L 2  2.88 1 .0

Co 2.5 2.5

C1 1/4.05 1/1.8
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L. CO1111I. NTS

It must by now be apparent that the driving-point realizations discussed in this

paper have some similarity to'the well-known Brune realizations (1931). Our

realizati.on, however, is a single terminated two-port, whereas Brune's is a cascade

of several two-ports. The single two-port allows us to induce the negative resist-

ance. Where application of the Brune cycle requires that a duplex zero appear

for the real component Re F(ju), our method requires that either Eq. (42) or (54)

yield 6 = 0. The Brune realization allows transforming the circuit into a Bott-

Duffin (1949) circuit. We have not yet found a similar equivalent for our circuits

even at the expense of using more elements to avoid the negative resistance. We

can get a Bott-Duffin equivalent only when 0(s) = 1/(s); in such case, however,

F(s) is nothing more than a frequency-transformed biquadratic function. Although

this event is almost trivial, cur realization procedure at least offers the -neans

of discovering the transformation. Whether an H-class function can alwa)s be

derived from an ER-class function by splitting off a proper function Uf(s) will have

to be deiermined empirically through a computer-aided design.
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